A local neural classifier for the recognition of EEG patterns associated to mental tasks
نویسندگان
چکیده
This paper proposes a novel and simple local neural classifier for the recognition of mental tasks from on-line spontaneous EEG signals. The proposed neural classifier recognizes three mental tasks from on-line spontaneous EEG signals. Correct recognition is around 70%. This modest rate is largely compensated by two properties, namely low percentage of wrong decisions (below 5%) and rapid responses (every 1/2 s). Interestingly, the neural classifier achieves this performance with a few units, normally just one per mental task. Also, since the subject and his/her personal interface learn simultaneously from each other, subjects master it rapidly (in a few days of moderate training). Finally, analysis of learned EEG patterns confirms that for a subject to operate satisfactorily a brain interface, the latter must fit the individual features of the former.
منابع مشابه
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملStress and Perception of Emotional Stimuli: Long-term Stress Rewiring the Brain
Introduction: Long-term stressful situations can drastically influence one’s mental life. However, the effect of mental stress on recognition of emotional stimuli needs to be explored. In this study, recognition of emotional stimuli in a stressful situation was investigated. Four emotional conditions, including positive and negative states in both low and high levels of arousal were analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2002